51 research outputs found

    Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a U-shaped barrier

    Get PDF
    © 2018 by the authors. Microfluidic devices have been widely used for biological and cellular studies. Microbioreactors for three-dimensional (3D) multicellular spheroid culture are now considered as the next generation in in vitro diagnostic tools. The feasibility of using 3D cell aggregates to form multicellular spheroids in a microbioreactor with U-shaped barriers has been demonstrated experimentally. A barrier array is an alternative to commonly used microwell traps. The present study investigates oxygen and glucose concentration distributions as key parameters in a U-shaped array microbioreactor using finite element simulation. The effect of spheroid diameter, inlet concentration and flow rate of the medium are systematically studied. In all cases, the channel walls are considered to be permeable to oxygen. Necrotic and hypoxic or quiescent regions corresponding to both oxygen and glucose concentration distributions are identified for various conditions. The results show that the entire quiescent and necrotic regions become larger with increasing spheroid diameter and decreasing inlet and wall concentration. The shear stress (0.5-9 mPa) imposed on the spheroid surface by the fluid flow was compared with the critical values to predict possible damage to the cells. Finally, optimum range of medium inlet concentration (0.13-0.2 mM for oxygen and 3-11 mM for glucose) and flow rate (5-20 μL/min) are found to form the largest possible multicellular spheroid (500 μm), without any quiescent and necrotic regions with an acceptable shear stress. The effect of cell-trap types on the oxygen and glucose concentration inside the spheroid was also investigated. The levels of oxygen and glucose concentration for the microwell are much lower than those for the other two traps. The U-shaped barrier created with microposts allows for a continuous flow of culture medium, and so improves the glucose concentration compared to that in the integrated U-shaped barrier. Oxygen concentration for both types of U-shaped barriers is nearly the same. Due to the advantage of using U-shaped barriers to culture multicellular spheroids, the results of this paper can help to choose the experimental and design parameters of the microbioreactor

    Novel approaches in cancer management with circulating tumor cell clusters

    Full text link
    © 2019 The Authors Tumor metastasis is responsible for the vast majority of cancer-associated morbidities and mortalities. Recent studies have disclosed the higher metastatic potential of circulating tumor cell (CTC) clusters than single CTCs. Despite long-term study on metastasis, the characterizations of its most potent cellular drivers, i.e., CTC clusters have only recently been investigated. The analysis of CTC clusters offers new intuitions into the mechanism of tumor metastasis and can lead to the development of cancer diagnosis and prognosis, drug screening, detection of gene mutations, and anti-metastatic therapeutics. In recent years, considerable attention has been dedicated to the development of efficient methods to separate CTC clusters from the patients’ blood, mainly through micro technologies based on biological and physical principles. In this review, we summarize recent developments in CTC clusters with a particular emphasis on passive separation methods that specifically have been developed for CTC clusters or have the potential for CTC cluster separation. Methods such as liquid biopsy are of paramount importance for commercialized healthcare settings. Furthermore, the role of CTC clusters in metastasis, their physical and biological characteristics, clinical applications and current challenges of this biomarker are thoroughly discussed. The current review can shed light on the development of more efficient CTC cluster separation method that will enhance the pivotal understanding of the metastatic process and may be practical in contriving new strategies to control and suppress cancer and metastasis

    Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture

    Full text link
    © 2018 Elsevier B.V. A cell spheroid is a three-dimensional (3D) aggregation of cells. Synthetic, in-vitro spheroids provide similar metabolism, proliferation, and species concentration gradients to those found in-vivo. For instance, cancer cell spheroids have been demonstrated to mimic in-vivo tumor microenvironments, and are thus suitable for in-vitro drug screening. The first part of this paper discusses the latest microfluidic designs for spheroid formation and culture, comparing their strategies and efficacy. The most recent microfluidic techniques for spheroid formation utilize emulsion, microwells, U-shaped microstructures, or digital microfluidics. The engineering aspects underpinning spheroid formation in these microfluidic devices are therefore considered. In the second part of this paper, design considerations for microfluidic spheroid formation chips and microfluidic spheroid culture chips (μSFCs and μSCCs) are evaluated with regard to key parameters affecting spheroid formation, including shear stress, spheroid diameter, culture medium delivery and flow rate. This review is intended to benefit the microfluidics community by contributing to improved design and engineering of microfluidic chips capable of forming and/or culturing three-dimensional cell spheroids

    Determinação das curvas de secagem das sementes de andiroba em secador solar

    Get PDF
    The oil of crabwood is commonly extracted in Amazon by traditional or by pressing method. The extraction efficiency is related to the heating and water content of the seeds. Thus, the determination of a drying model that represent satisfactorily the experimental data is of paramount importance to minimize the changes introduced by the process, consequently obtaining a quality product. The objective of this study was to describe the drying kinetics of seeds of crabwood as well as adjust the mathematical models to the experimental data, using solar dryer. The coefficient of determination, the magnitude of the mean relative error and standard deviation of the estimate was used as the criterion of fit of mathematical models. Drying in a shorter period of time (14 days) of Carapa surinamensis to reach the water equilibrium content (12.28%) may be attributed to the smaller size of the seeds and the greater amount of oil compared to Carapa guianensis. Logarithmic and Midilli et al. were the model that best fitted the experimental data for seeds of both species of Andiroba. © 2015, Departamento de Engenharia Agricola - UFCG/Cnpq. All rights reserved

    Recent advances and future perspectives on microfluidic liquid handling

    Get PDF
    © 2017 by the authors. The interdisciplinary research field of microfluidics has the potential to revolutionize current technologies that require the handling of a small amount of fluid, a fast response, low costs and automation. Microfluidic platforms that handle small amounts of liquid have been categorised as continuous-flow microfluidics and digital microfluidics. The first part of this paper discusses the recent advances of the two main and opposing applications of liquid handling in continuous-flow microfluidics: mixing and separation. Mixing and separation are essential steps in most lab-on-a-chip platforms, as sample preparation and detection are required for a variety of biological and chemical assays. The second part discusses the various digital microfluidic strategies, based on droplets and liquid marbles, for the manipulation of discrete microdroplets. More advanced digital microfluidic devices combining electrowetting with other techniques are also introduced. The applications of the emerging field of liquid-marble-based digital microfluidics are also highlighted. Finally, future perspectives on microfluidic liquid handling are discussed

    Numerical simulation of the behavior of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped barrier

    Get PDF
    © 2017 by the authors. A microfluidic system provides an excellent platform for cellular studies. Most importantly, a three-dimensional (3D) cell culture model reconstructs more accurately the in vivo microenvironment of tissue. Accordingly, microfluidic 3D cell culture devices could be ideal candidates for in vitro cell culture platforms. In this paper, two types of 3D cellular aggregates, i.e., toroid and spheroid, are numerically studied. The studies are carried out for microfluidic systems containing U-shaped barrier as well as microwell structure. For the first time, we obtain oxygen and glucose concentration distributions inside a toroid aggregate as well as the shear stress on its surface and compare its performance with a spheroid aggregate of the same volume. In particular, we obtain the oxygen concentration distributions in three areas, namely, oxygen-permeable layer, multicellular aggregates and culture medium. Further, glucose concentration distributions in two regions of multicellular aggregates and culture medium are investigated. The results show that the levels of oxygen and glucose in the system containing U-shaped barriers are far more than those in the system containing microwells. Therefore, to achieve high levels of oxygen and nutrients, a system with U-shaped barriers is more suited than the conventional traps, but the choice between toroid and spheroid depends on their volume and orientation. The results indicate that higher oxygen and glucose concentrations can be achieved in spheroid with a small volume as well as in horizontal toroid with a large volume. The vertical toroid has the highest levels of oxygen and glucose concentration while the surface shear stress on its surface is also maximum. These findings can be used as guidelines for designing an optimum 3D microfluidic bioreactor based on the desired levels of oxygen, glucose and shear stress distributions

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    Full text link
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein, we define a new non-dimensional parameter (ψ) as the ratio of the minimum length of the microchannel required for the desired fluid mixing to the product of the channel width and Peclet number. The numerically obtained values of ψ (i.e., 0.22 and 0.17 for 95% mixing in straight and serpentine micromixers, respectively) are in good agreement with the experimental results. The numerical simulation also shows that the value of ψ is the same for all micromixers in a CGG with the similar microchannel structure (e.g., straight or serpentine) and is independent of the channel size (width-to-depth ratio) and fluid velocity. Therefore, ψ can be computed only once for any micromixer with different structures (e.g., zigzag, square wave, and so forth) and then considering this constant value of ψ, the minimum required length of all other micromixers in a CGG with similar repetitive structures and dimensions at the specified flow rates could be designed quickly and precisely
    corecore